U.S. AutoML Market Size & Opportunities Analysis - Growth Strategies, Competitiveness, and Forecasts (2025 - 2032)
This Report Provides In-Depth Analysis of the U.S. AutoML Market Report Prepared by P&S Intelligence, Segmented by Enterprise Size (Large Enterprise, SME), Application (Fraud Detection, Sales & Marketing Management, Medical Testing, Transport Optimization), Industry (BFSI, IT & Telecom, Healthcare, Government, Retail, Manufacturing), Deployment Type (Cloud, On-Premises), and Geographical Outlook for the Period of 2019 to 2032
Explore the market potential with our data-driven report
U.S. AutoML Market Overview
The U.S. automated machine learning (AutoML) market size was USD 428.6 million in 2024, and it will grow by 26% during 2025–2032, reaching USD 2696.8 million by 2032.
This market is driven by the growing interest of industries, corporate businesses, and individuals in AI and ML solutions. Organizations are using AutoML tools for improved decisions and efficiency, ultimately, to gain a competitive edge. AutoML helps in solving the challenges caused by data explosion with its ability to make the analysis of big data simpler, without the use of specialized knowledge for the retrieval of the value.
The advancement in ML algorithms and the implementation of AI in various business operations lead to higher AutoML adoption. These tools assist businesses in meeting significant security and privacy requirements, since data protection has become especially significant with the emergence of such regulations as GDPR.
In September 2024, the Department of Energy (DoE) announced USD 68 million in funding for AI for scientific research, focusing on foundation models, algorithms, and energy-efficient hardware.
U.S. AutoML Market Growth Factors
No-Code and Low-Code Platforms Are Key Trend
No- and low-code platforms let non-technical individuals construct and train machine learning models and deploy them without programming skills.
Low-code tools are expected to account for over 70% of the software development, enabling non-technical users to contribute to app creation.
The user-friendly interfaces of these platforms reduce the complexity of ML programming tasks, so individuals without technical skills can make models.
In December 2024, BigML deployed Association Discovery on the cloud.
The tool unearths unknown associations between the variables of large-dimensional datasets in a single click.
The platform has easy drag-and-drop functions that do not require complex programming, thus making the platform user-friendly for business analysts, marketers, and even non-data scientists.
In June 2024, Creatio closed a funding round of USD 200 million, which brought its valuation to USD 1.2 billion.
The investment is being used for the further development of the company’s product and the automation of marketing and sales processes with generative AI.
No-code and low-code AutoML platforms allow for the automated processing of the traditionally time-consuming ML operations, such as data preprocessing, model choice, and hyperparameter optimization. This increases productivity across departments and expedites projects.
These platforms provide pre-built models and templates ready to use for common applications, so users can easily apply ML to their data source without having to build models from scratch.
The platforms train and assess the performance ML models in the background, to keep the best algorithms and optimize performance.
Increasing Demand for AI and ML across Industries Is Major Growth Driver
The market is expanding because of the escalating demand for the AI and ML technologies.
Various industries are adopting AI tools to simplify and automate ML, in order to improve decision-making, optimize operations, and enhance overall efficiency.
The NSF spends about USD 700 million a year on AI research, which covers basic research on ML and related fields that make up the foundation of AutoML.
Earlier, developers with the knowledge of data science, programming, and advanced mathematics were needed for developing ML models; however, this restricts many organizations from leveraging this technology.
In February 2024, TMF made a call for proposals to aid government agencies implementing the Executive Order on AI.
With AutoML tools, firms have the opportunity to apply ML models without non-specialized technical skills.
In October 2023, the president of the U.S. signed a new decree on AI that says that corporations building powerful AI and cloud tools must publicize vital safety reports and other important information, to keep it safe and trustworthy.
U.S. AutoML Market Segmentation Analysis
Enterprise Size Analysis
The large enterprise category held the dominant market share, of 75%, in 2024. This is because these businesses have greater access to large datasets and money to use to deploy advanced technologies, including AutoML. They need to analyze this information to obtain actionable insights for business growth, which can be cumbersome if done manually. By using AutoML and other AI technologies, these firms can lessen the requirement for humans in mundane and repetitive tasks and direct them to more-important processes.
The SME category will grow at the higher CAGR, during the forecast period. This is because of the expanding availability of the low-cost, cloud-based AutoML systems with easy-to-use interfaces. AutoML platforms provide SMEs with AI functionalities at affordable prices, without requiring any specialized technical know-how. This allows smaller organizations to compete effectively with their larger players in their respective industries.
The enterprise sizes analyzed here are:
Large Enterprise (Larger Category)
SMEs (Faster-Growing Category)
Application Analysis
The sales & marketing management category held the largest market share, of 60%, in 2024, and it will grow at the highest CAGR, during the forecast period. This is because these departments are actively implementing ML to enhance operations and business decisions. AutoML allows sales & marketing departments to automate such processes as customer segmentation, demand forecasting, personalization, and campaign optimization.
Businesses across all industries are seeking ways of incorporating AI into their marketing activities in a bid to remain competitive in a data-driven economy. Companies need high-tech tools to analyze the increasing amount of customer information, in order to successfully optimize marketing processes.
The applications analyzed here are:
Fraud Detection
Sales & Marketing Management (Largest and Fastest-Growing Category)
Medical Testing
Transport Optimization
Others
Industry Analysis
The BFSI category held the largest market share, of 40%, in 2024. This is because banks, insurance companies, and investment firms analyze and use massive amounts of data to make decisions. AutoML tools enable automated data analysis, which augments and simplifies central operations such as fraud detection, credit evaluation, risk determination, and customer services.
The healthcare category will grow at the highest CAGR, during the forecast period. This is because of the rising use of AutoML tools to process medical data, such as patient records, medical imaging, and genetic information. Effective data analysis helps make clinical decisions for improved patient results. AutoML tools are also applied in healthcare to develop personalized treatments, diagnose diseases, and forecast epidemics.
The industries analyzed here are:
BFSI (Largest Category)
IT & Telecom
Healthcare (Fastest-Growing Category)
Government
Retail
Manufacturing
Others
Deployment Type Analysis
The cloud category held the larger market share, of 80%, in 2024, and it will grow at the higher CAGR, during the forecast period. This is because cloud-based AutoML provides flexible, scalable, and cost-effective solutions. These solutions are attractive to businesses because they eliminate hardware and infrastructure costs. Google Cloud AutoML, Amazon AWS SageMaker, and Microsoft Azure Machine Learning offer comprehensive solutions ranging from data storage to preprocessing and model deployment to monitoring.
The deployment types analyzed here are:
Cloud (Larger and Faster-Growing Category)
On-Premises
Drive strategic growth with comprehensive market analysis
U.S. AutoML Market Regional Outlook
The Western region held the largest market share, of 65%, in 2024 because of the technology hubs of Silicon Valley, San Francisco, and Seattle, where the tech companies receive heavy venture capital investments. The region is also home to a large number of AI technicians, and it possesses a strong culture of innovation, which make it a key hub for early and large-scale implementation of ML technologies.
The Northeast region will grow at the highest CAGR, during the forecast period, driven by the rapid adoption of AutoML in the finance, healthcare, and education sectors. The large financial institutions based in New York and Boston use AI for fraud detection, portfolio management, and risk analytics. The presence of prestigious universities, such as MIT and Harvard, which employ numerous AI researchers and data scientists, leads to extensive efforts for innovation and consistent project pipelines. Furthermore, the vibrant startup ecosystem with a particular emphasis on AI-driven business transformation drives the market in the region.
The regions analyzed in this report are:
Northeast (Fastest-Growing Region)
Midwest
West (Largest Region)
South
U.S. AutoML Market Competitive Landscape
The market is fragmented in nature because it comprises various companies that provide various kinds of solutions. This diversity is due to the wide variety of business requirements and user competence from non-technical users to competent data scientists. The players cater to various industries, such as finance, healthcare, and manufacturing, with individual needs, which leads to the need for customized individual solutions. Additionally, a large number of companies from Asia and Europe offer AutoML solutions in the U.S., which fragments the market and augments competition.
Key U.S. AutoML Companies:
Microsoft
JADBio
DataRbot, Inc.
Amazon Web Services, Inc.
SAS Institute Inc.
H2O.ai, Inc.
QlikTech International AB
Determined.ai, Inc.
Squark Inc
IBM Corporation
dotData, Inc
Google Cloud
U.S. AutoML Market News & Updates
In November 2024, H2O.ai launched its beacon flagship H2O World event from the NASDAQ building in New York City. Over 200 executives and professionals from the BFSI, telecommunications, and healthcare industries discussed the latest in generative AI and its applications in various fields.
In May 2024, Qlik acquired Talend to advance its data management and analytics offerings.
Want a report tailored exactly to your business need?
Leading companies across industries trust us to deliver data-driven insights and innovative solutions for their most critical decisions. From data-driven strategies to actionable insights, we empower the decision-makers who shape industries and define the future. From Fortune 500 companies to innovative startups, we are proud to partner with organisations that drive progress in their industries.
Client Testimonials
Working with P&S Intelligence and their team was an absolute pleasure – their awareness of timelines and commitment to value greatly contributed to our project's success. Eagerly anticipating future collaborations.
McKinsey & Company
India
Unmatched Standards
Our insights into the minutest levels of the markets, including the latest trends and competitive landscape, give you all the answers you need to take your business to new heights
Complete Data Security
We take a cautious approach to protecting your personal and confidential information. Trust is the strongest bond that connects us and our clients, and trust we build by complying with all international and domestic data protection and privacy laws