This Report Provides In-Depth Analysis of the Machine Condition Monitoring Equipment Market Report Prepared by P&S Intelligence, Segmented by Type (Software, Hardware), Moniotoring Type (Vibration Monitoring, Lubricating Oil Analysis, Thermography, Ultrasound Emission, Corrosion Monitoring, Motor Current Signature Analysis), Monitoring System (Portable Monitoring System, Fixed Monitoring System), Deployment Type (Cloud, On-premises), End User (Automotive, Energy and Power, Aerospace and Defense, Chemicals, Oil and Gas, Metals and Mining, Marine), and Geographical Outlook for the Period of 2019 to 2032
The machine condition monitoring equipment market size was USD 3.5 billion in 2024, and the market size is predicted to reach USD 6.6 billion by 2032, advancing at a CAGR of 8.5% during 2025–2032.
The market is popular and expands rapidly because industries focus on maximizing their assets and predictive maintenance strategies. The main objective is both failure prevention and efficient resource management. Wireless technology adoption together with HVAC market expansion and remote maintenance solutions creates the main drivers behind market development. Market expansion occurs due to growing requirements for smart factories together with the need to monitor diverse machine parameters. The United States maintains its position as a leader in the global market because its economy is expanding at the same time productivity in industries increases due to advanced monitoring technology. Government-supported NIST programs together with other initiatives boost industry progress through their strategic backing. The market demonstrates positive long-term potential since artificial intelligence (AI) and IoT-enabled predictive maintenance will boost operational effectiveness. The worldwide market growth will expand at an accelerated pace due to modern automation trends and the advancement of Industry 4.0 movements.
AI & IoT-Driven Predictive Maintenance Revolutionizing Machine Monitoring Is a Trend
AI sensors perform live machine health analysis which prevents equipment failures from happening unexpectedly. Companies can transform their maintenance approach from reactive to proactive by using this method which decreases their repair expenses.
The collection of large machine data by IoT-enabled devices enables organizations to generate predictive information. AI algorithm systems enhance decision processes through their ability to detect repeating patterns in machine operational patterns.
Through predictive maintenance, companies can reduce their maintenance expenses by performing repairs only when machines require attention. AI systems optimize energy consumption to aid sustainability projects.
The U.S. (NIST) and Europe (Industry 5.0) together with other governments across the world support industrial automation driven by AI. High-tech manufacturing industries are adopting AI-enabled monitoring as a common practice for their operations.
In February 2025, Emerson established an alliance with Zitara to improve battery safety and performance through advanced predictive analytics tools. The collaboration has set out to build improved battery management systems (BMS) which will serve the needs of industrial operations and energy storage facilities
Rise of Smart Factories and Industry 4.0 Boosting Market Expansion
Smart factories solve critical issues with resources and energy consumption as well as labor expenses and operational budget increases. Population changes and a shortage of qualified workers require companies to automate their operations to sustain their industrial development.
Chemical factories together with hazardous industries need to comply with OHSAS 18001 and 29 CFR 1910.107 regulatory standards. Companies are adopting machine condition monitoring solutions because heavy non-compliance penalties force them to do so. These devices provide flexible production capabilities that maintain smooth communication between control systems operators and visualization units.
The integration between systems enables factories to handle their elaborate work processes smoothly.
The advancement of monitoring equipment in smart factories gains momentum because businesses require more efficient operations. Time-critical condition tracking solutions for high-performance applications will experience rising market demand thanks to expanding factory automation systems.
The hardware category held the larger market share, of 85%, in 2024. This is attributed to increasing requirements for such equipment in critical applications, such as manufacturing and chemical industries that are prone to defects.
Industrial operations depend heavily on vibration sensors because they detect initial machinery deterioration signals before problems escalate. The oil & gas industry along with aerospace and power generation and manufacturing require vibration monitoring to minimize equipment downtime and avoid operational breakdowns. Real-time precise data from hardware sensors exceeds the capabilities of software-based predictions and thus makes industries rely on them for condition monitoring. New-generation advanced wireless IoT-enabled vibration sensors from companies enable efficient and easier deployment in smart factories.
The software category will grow at a higher CAGR, during the forecast period. The industrial world now uses artificial intelligence analytics and Industrial IoT (IIoT) to spot product failures at their onset. The integration of cloud systems enables operators to perform real-time machine diagnostics and monitor equipment conditions from any location which results in increased operational effectiveness. Companies now dedicate more resources to predictive analytics software purchases as a result of Industry 4.0 advancements because it improves asset management capabilities. Software-based solutions are implemented more efficiently because they use fewer physical components which enable businesses to expand these systems across various sectors.
The types analyzed here are:
Software (Faster-Growing Category)
Hardware (Larger Category)
Ultrasound Detector
Spectrum Analyzer
Corrosion Probes
Spectrometer
Infrared Sensor
Vibration Sensor
Monitoring Type Analysis
The vibration monitoring category held the largest market share, of 65%, in 2024. This is because the industries which include oil & gas and power generation and manufacturing sectors depend on vibration analysis to identify misalignment and imbalance and mechanical wear conditions. Real-time monitoring of vibration provides precise condition data which makes it the most trusted predictive maintenance approach. Various organizations choose wireless vibration sensors because they continuously monitor machine health while providing remote monitoring capabilities.
The ultrasound emission category will grow at a higher CAGR, during the forecast period, as it detects problems such as minor leaks together with electrical discharges and bearing failures at stages when they remain non-critical. The aerospace sector together with automotive industries and manufacturing operations depend on ultrasound-based monitoring to enhance maintenance workflows. Monitored compressed air and gas leaks enable industries to decrease energy wastage thus supporting sustainability targets.
The monitoring types analyzed here are:
Vibration Monitoring (Largest Category)
Lubricating Oil Analysis
Thermography
Ultrasound Emission (Fastest-Growing Category)
Corrosion Monitoring
Motor Current Signature Analysis
Monitoring System Analysis
The fixed monitoring system category held the larger market share, of 75%, in 2024. This is because industrial facilities employing high-value machinery should implement fixed. After all, these systems continuously track equipment while running around the clock. The power generation sector along with the manufacturing and aerospace industries depend heavily on these tracking systems. The consistent nature of fixed monitoring technology enables better condition-based maintenance because it provides constant data collection. The implementation of fixed monitoring systems with AI and IoT technologies under Industry 4.0 boosts predictive maintenance capabilities in companies.
The portable monitoring system category will grow at a higher CAGR, during the forecast period. Maintenance teams can use portable systems to examine various machines without fixed sensors through portable testing which provides cost-effective solutions for diverse industrial equipment bases. Multiple industries choose handheld and wireless monitoring devices for conducting immediate real-time assessments of machine health conditions. Portable systems find extensive use throughout oil & gas sectors as well as energy industries and transportation systems because they require onsite condition monitoring capabilities.
The monitoring systems analyzed here are:
Portable Monitoring System (Faster-Growing Category)
Fixed Monitoring System (Larger Category)
Deployment Type Analysis
The on-premises category held the larger market share, of 70%, in 2024. Companies operating sensitive equipment such as power plants and defense facilities together with oil & gas industry sectors select on-site deployments to maintain control over their data security systems. The on-premises system operates with high-speed data processing and works independently from the internet thus serving missions that need instant response. Industrial companies that have deployed predictive maintenance systems before maintain on-premises infrastructure which causes them to resist shifting everything to cloud platforms. Different industries need to store data locally according to regulatory requirements which creates a preference for deploying systems inside their premises.
The cloud category will grow at a higher CAGR, during the forecast period, as Cloud solutions enable business operators to check machine conditions remotely so they no longer need to conduct onsite checks. Cloud deployment removes the need for expensive initial infrastructure costs thus enabling businesses of diverse sizes to implement the system.
The deployment types analyzed here are:
Cloud (Faster-Growing Category)
On-premises (Larger Category)
End User Analysis
The oil and gas category held the largest market share, of 60%, in 2024. Complex high-value equipment including drilling rigs and pipelines with compressors form the basis of this industry which has the potential to trigger calamitous financial and protective losses in case of equipment failure. Government bodies together with organizations maintain strict maintenance requirements to stop accidents and avoid spills and emissions-related violations. Organizations continue to depend increasingly on condition monitoring systems for their equipment upkeep while minimizing unexpected equipment stoppages. Real-time condition monitoring solutions help oil refineries and drilling platforms detect equipment failures and pipeline leaks as well as monitor equipment corrosion in their operations.
The energy and power category will grow at a higher CAGR, during the forecast period. The rising power consumption and broadening power grid network causes power plants and renewable energy facilities to emphasize condition monitoring systems for failure prevention. The implementation of AI-based monitoring systems enables the detection of transformer turbine and generator faults to achieve better operational outcomes. Power plant operators invest in real-time condition monitoring systems because stricter maintenance guidelines and efficiency requirements have become mandatory.
The end users analyzed here are:
Automotive
Energy and Power (Fastest-Growing Category)
Aerospace and Defense
Chemicals
Oil and Gas (Largest Category)
Metals and Mining
Marine
Drive strategic growth with comprehensive market analysis
North America held the largest market share, of 40%, in 2024. The compliance standards of oil & gas together with chemicals and manufacturing sectors demand ongoing condition monitoring for operational safety purposes. General Electric together with Honeywell Rockwell Automation and Schneider Electric operate from the region as they develop predictive maintenance technologies. Companies now utilize IIoT-based condition monitoring systems to boost their operational performance.
The implementation of automation at Schneider Electric’s smart factory in the United States resulted in a 20% decrease in required machine repairs. Manufacturing as well as transportation and power generation industries have adopted machine condition monitoring extensively since they need to minimize equipment downtime while extending their operational life.
The market in the APAC region will grow at a higher CAGR, during the forecast period. This is because the combination of inexpensive labor costs and enhanced automation systems makes China and India together with Japan preferential sites for worldwide manufacturing activities. China stands as the market leader with USD 78 billion allocated for nuclear power plant development plus its ongoing CNPC oil & gas exploration activities create higher demand for condition monitoring solutions in strategic industries. India and China have initiated "Made in China 2025" and India’s automation expansion in solar energy and industrial control systems which leads to greater adoption of predictive maintenance solutions. The industrial automation advancements at Delta Electronics and ABB India drive up the need for condition monitoring systems in their operations.
The machine condition monitoring industry demonstrates fragmentation because various businesses operate throughout multiple industrial sectors. Emerson Electric Co. maintains the market's largest position through its innovative predictive maintenance tools and industrial IoT capabilities which extend across various industries. This market demonstrates growing expansion because smart factories are on the rise while industries increase their need for predictive maintenance together with their adoption of AI-driven analytics. The market will keep growing steadily because industries focus on minimizing downtime while improving efficiency along with meeting regulatory standards and North America together with Asia-Pacific leads the adoption rate.
In March 2025, Honeywell declared its intention to buy Sundyne to build its critical equipment segment specifically to strengthen control of industrial pumps and compressors. Through this acquisition, Honeywell extends its process automation and reliability solutions to deliver better high-performance industrial operations.
In March 2025, Rockwell Automation released the Allen-Bradley 852C and 852D On-Machine LED Indicators as products that deliver immediate visual system status information. The indicators serve to boost industrial machine performance along with improving operator visibility during operations.
Want a report tailored exactly to your business need?
Leading companies across industries trust us to deliver data-driven insights and innovative solutions for their most critical decisions. From data-driven strategies to actionable insights, we empower the decision-makers who shape industries and define the future. From Fortune 500 companies to innovative startups, we are proud to partner with organisations that drive progress in their industries.
Client Testimonials
Working with P&S Intelligence and their team was an absolute pleasure – their awareness of timelines and commitment to value greatly contributed to our project's success. Eagerly anticipating future collaborations.
McKinsey & Company
India
Unmatched Standards
Our insights into the minutest levels of the markets, including the latest trends and competitive landscape, give you all the answers you need to take your business to new heights
Complete Data Security
We take a cautious approach to protecting your personal and confidential information. Trust is the strongest bond that connects us and our clients, and trust we build by complying with all international and domestic data protection and privacy laws