The global enterprise asset management market size is expected to advance at a CAGR of 14% during 2021–2030, to reach $19,401.9 million by 2030.
This is ascribed to the growing awareness regarding predictive analytics among SMEs and large enterprises, rising construction activities, increasing need for enhancing asset availability and eliminating asset breakdowns, surging maintenance costs, and strengthening focus on the better utilization of assets.
The service category is projected to witness the faster growth over the next few years. The main driving factor for this category is the growing need for managed and professional services, to enhance business operations. Service providers implement, maintain, monitor, and train end users to utilize EAM solutions optimally, which further helps customers cut the long-term costs and streamline their business activities.
The rate at which information is generated, gathered, and processed has a significant influence on an organization’s operations. All of the information may contribute to reducing costs, by maximizing asset management and decreasing thefts, losses, and the issues related to equipment storage. In the coming years, firms will turn their emphasis to systems that can handle a large volume of data that is needed to be monitored and evaluated, to enhance their operational efficiency. Organizations that are able to discover, acquire, integrate, and monitor their data will have a significant competitive edge. This step is especially critical for companies wanting to revive or improve their predictive maintenance approach. Identifying what solutions are needed to aid in the storage and organization of asset data can be a difficult task, which can be solved using EAM.
Now, enterprises are more focused on increasing profit by cutting the maintenance and procurement costs incurred during the process of product manufacturing. EAM solutions can lower maintenance costs by closely tracking operations, providing better information on capital investment decisions, and integrating maintenance solutions, for the effective control of equipment. Moreover, this approach helps reduce the procurement cost of materials, minimizes maintenance costs, and increases project return on investment (ROI). Enterprises are, thus, optimizing their operating costs through the use of EAM software.
With the use of AI, it would be possible to extract data from records, which could help mid-level executives take decisions without the need for reading those reports. Hence, with the advancements in technology, the integration of AI with EAM is expected to create more opportunities for software developers in the future. Some of the benefits of integrating AI with asset management solutions include real-time asset monitoring, predictive asset management, and actionable insights through data analytics, for data-driven decision-making.
Further, the demand for drone-based asset management solutions is expected to witness considerable growth in the coming years. Drones can be deployed to collect information from places that are out of human reach. The collected information can be given to the EAM system for further utilization. Drone-based asset management can be used in oil refineries, offshore oil drilling platforms, bridges, cargo ships, airplanes, and railroad beds.
Some of the major players operating in the global enterprise asset management market are Oracle Corporation, SAP SE, IBM Corporation, Schneider Electric SE, ABB Ltd., Industrial and Financial Services (IFS) AB, MRI Software LLC, CGI Inc., Infor Inc., Ramco Systems Limited, Rockwell Automation Inc., and Bentley Systems Incorporated.