Machine Learning as a Service (MLaaS) Market by Component (Software, Service), by Application (Marketing & Advertising, Fraud Detection, Risk Analytics, Predictive Maintenance, Augmented Reality, Network Analytics), by Enterprise Size (SMEs, Large Enterprise), by Industry Vertical (Education, BFSI, Transportation & Logistics and Automotive, Healthcare & Life Sciences, Government & Defense, Retail & Manufacturing, Media & Entertainment, IT & Telecom)– Global Market Size, Share, Development, Growth and Demand Forecast, 2014-2024

  • Publishing: May 2021
  • Report Code: IM11293
  • Available Format: PDF

Machine Learning as a Service Market Overview

The global machine learning as a service market is on a significant rise because of the ongoing revolution of internet and its related services. Service category contributed a larger revenue to the global market in 2016 due to increase in the demand for advanced cloud based machine learning services across sectors. MLaaS refers to a range of services which offer machine learning tools as part of advanced cloud computing services. The tools in the MLaaS include data visualization, application program interface (API), face recognition, natural language processing, and predictive analytics and deep learning. The prime attraction of MLaaS is that consumers can get started easily with machine learning without the need to install software, or provision their own servers, just like any other cloud service. For decades, machine learning has been a field which was dominated by data scientists and few organizations who had enough computing power to run complex algorithms against huge datasets. In recent years, the world of machine learning and predictive analytics is opening up for small and medium level developers and companies of all sizes, as the providers are offering their products through a subscription-based model.

The global market is on a significant rise because of the ongoing revolution of internet and its related services. The trend of bridging the world’s applications and resources virtually, has generated huge amounts of data. Since the mainstream deployment of machine learning enhances the overall speed and accuracy of functions performed by a particular operating system, this factor has boosted the overall adoption of machine learning within many organizations. In addition, the introduction of analytics technologies such as predictive analytics by several verticals, including healthcare and life sciences, IT & Telecom, BFSI, and retail & manufacturing, is also contributing highly towards the market growth,globally.

Insights on Machine Learning as a Service Market Segments

The market is categorized mainly into two components, software and service. The service category wasthe larger contributor to global revenue during 2013-2016. In the service category, professional service accounts for the larger share in the market as compared to managed service.On the other hand, the market for managed services is expected to grow faster during the forecast period. Professional services include support & maintenance, consulting & integration, network security services, and analytics, which are backing the growth and awareness of MLaaS adoption, globally.

Among various industry verticals, healthcare & life sciences, IT & Telecom, retail & manufacturing, and government & defense are the major markets for MLaaS. The demand for MLaaS from retail & manufacturing is expected to be the largest, while fastest demand is expected from healthcare & life sciences in coming years. This can be attributed to the rapid increase in the need for machine learning in the healthcare sector to integrate the structured and unstructured data. The data generated in healthcare is mainly from electronic health record (EHR), genomic and various claims.

Machine Learning as a Service Market Dynamics

The global market is driven by factors such as increase in adoption of cloud based technologies by enterprises, growing need to understand consumer behaviour, advancement in learning and analytics technologies, and increase in affordability of data storage. Internet of things (IoT), neural networks, cognitive computing, artificial intelligence (AI), and deep learning technologies are expected to provide numerous opportunities for the growth of global machine learning industry. However, the roadblocks to the growth of the global market include lack of historical data among small sized enterprises, seamless integration into current operating systems, and the growing need for effective and efficient predictive analytics technologies.

Growth Drivers

The recent rise in demand to understand consumer behaviour and purchasing patterns across verticals is one of the prime factors for the growth of machine learning industry. Recommendation systems, which are now being used across a wide range of industries such as online shopping sites, help organisations to get a deeper insight about their customer behaviour and product buying pattern. This further enables them in discovering new and relevant product specific offers, which ultimately lead to a strong and healthy customer relationship, and further generate higher sales for the business. Also, machine learning as service helps leaders in making important decisions during real time operation with best outcome predictions.

Machine Learning as a Service Market Regional Insights

North America has been the largest revenue contributor to the global market. The market in the region is also expected to grow the fastest during the forecast period. The fastest growth is expected to be fuelled by the increase in the need for integration of MLaaS with big data, and rise in IoT and other advanced data oriented technologies. Another reason which is expected to escalate the demand for machine learning solutions is the rapid expansion of all sized enterprises in the region. On the other hand, the market in Asia-Pacific is also expected to witness significant growth in coming years. The high growth in Asia-Pacific is expected to be backed by rise in investment for analytics and predictive software development by regional players, growth in adoption of machine learning tools, and the ongoing e-commerce wave.

Machine Learning as a Service Market Competitive Landscape

Players in the global market are more focused on enhancing their product and service offerings through various strategic approaches. The machine learning providers are competing by launching new product categories, including advanced subscription based platforms. The companies have adopted the strategy of version upgradations, partnerships, agreements, mergers and acquisitions, and strategic collaborations with regional and international players to achieve high growth in the market. The strategy of new product launches and upgradation accounted for a share of more than 40% of the total market developments. Some of the prominent players operating in the global machine learning industry are IBM Corporation, Google Inc., Amazon Web Services, Microsoft Corporation, AT&T, FICO,, Yottamine Analytics, Ersatz Labs Inc, Predictron Labs Ltd and SAS Institute.

Place An Order
USD 4900 USD 6400 USD 8400
Customized Report Solution

Get a bespoke market intelligence solution

We are committed to ensuring the highest level of client satisfaction
Quality Acknowledgement
Quality Acknowledgement

Our dedication to providing the most-accurate market information has earned us verification by Dun & Bradstreet (D&B). We strive for quality checking of the highest level to enable data-driven decision making for you

Unmatched Standards
Unmatched Standards

Our insights into the minutest levels of the markets, including the latest trends and competitive landscape, give you all the answers you need to take your business to new heights

Reach Us
Reach Us Whenever You Need Us

With 24/7 research support, we ensure that the wheels of your business never stop turning. Don’t let time stand in your way. Get all your queries answered with a simple phone call or email, as and when required

Data Security
Complete Data Security

We take a cautious approach to protecting your personal and confidential information. Trust is the strongest bond that connects us and our clients, and trust we build by complying with all international and domestic data protection and privacy laws